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Abstract

Bayesian inference and Gaussian processes are widely used
in applications ranging from robotics and control to biologi-
cal systems. Many of these applications are safety-critical and
require a characterization of the uncertainty associated with
the learning model and formal guarantees on its predictions.
In this paper we define a robustness measure for Bayesian
inference against input perturbations, given by the probabil-
ity that, for a test point and a compact set in the input space
containing the test point, the prediction of the learning model
will remain δ−close for all the points in the set, for δ > 0.
Such measures can be used to provide formal guarantees for
the absence of adversarial examples. By employing the the-
ory of Gaussian processes, we derive tight upper bounds on
the resulting robustness by utilising the Borell-TIS inequal-
ity, and propose algorithms for their computation. We evalu-
ate our techniques on two examples, a GP regression problem
and a fully-connected deep neural network, where we rely on
weak convergence to GPs to study adversarial examples on
the MNIST dataset1.

Introduction
The widespread deployment of machine learning models,
coupled with the discovery of their fragility against care-
fully crafted manipulation of training and/or test samples
(Biggio and Roli 2017; Grosse et al. 2017a; Szegedy et
al. 2013), calls for safe approaches to AI to enable their
use in safety-critical applications, as argued, e.g., in (Se-
shia, Sadigh, and Sastry 2016; Dreossi, Donzé, and Se-
shia 2017). Bayesian techniques, in particular, provide a
principled way of combining a-priori information into the
training process, so as to obtain an a-posteriori distribu-
tion on test data, which also takes into account the uncer-
tainty in the learning process. Recent advances in Bayesian
learning include adversarial attacks (Grosse et al. 2017b)
and methods to compute pointwise uncertainty estimates
in Bayesian deep learning (Gal and Ghahramani 2016).
However, much of the work on formal guarantees for ma-
chine learning models has focused on non-Bayesian mod-
els, such as deep neural networks (NNs) (Huang et al. 2017;
Hein and Andriushchenko 2017) and, to the best of our
knowledge, there is no work directed at providing formal

1Code is available at https://github.com/andreapatane/checkGP.

guarantees for the absence of adversarial local input pertur-
bations in Bayesian prediction settings.

Gaussian processes (GPs) are a class of stochastic pro-
cesses that are, due to their many favourable properties,
widely employed for Bayesian learning (Rasmussen 2004),
with applications spanning robotics, control systems and bi-
ological processes (Sadigh and Kapoor 2015; Laurenti et
al. 2017; Bortolussi et al. 2018). Further, driven by pio-
neering work that first recognized the convergence of fully-
connected NNs to GPs in the limit of infinitely many neu-
rons (Neal 2012), GPs have been used recently as a model to
characterize the behaviour of NNs in terms of convergence
analysis (Matthews et al. 2018), approximated Bayesian in-
ference (Lee et al. 2017) and training algorithms (Chouza,
Roberts, and Zohren 2018).

In this paper we compute formal local robustness guar-
antees for Bayesian inference with GP priors. The resulting
guarantees are probabilistic, as they take into account the un-
certainty intrinsic in the Bayesian learning process and ex-
plicitly work with the a-posteriori output distribution of the
GP. More specifically, given a GP model trained on a given
data set, a test input point and a neighborhood around the lat-
ter, we are interested in computing the probability that there
exists a point in the neighbourhood such that the prediction
of the GP on the latter differs from the initial test input point
by at least a given threshold. This implicitly gives guaran-
tees on the absence of adversarial examples, that is, input
samples that trick a machine learning model into perform-
ing wrong predictions.

Unfortunately, computing such a probability is far from
trivial. In fact, given a compact set T ⊆ Rm,m > 0, and
x∗ ∈ T, the above measure reduces to computing the prob-
ability that there exists a function f sampled from the GP
such that there exists x ∈ T for which ||f(x∗)− f(x)|| > δ,
where δ > 0 and || · || is a metric norm. Since the set T is
composed of an infinite number of points, computing such a
measure for general stochastic processes is extremely chal-
lenging. However, for GPs we can obtain tight upper bounds
on the above probability by making use of inequalities devel-
oped in the theory of GPs, such as the Borell-TIS inequality
(Adler and Taylor 2009) and the Dudley’s Entropy Integral
(Dudley 1967). To do this, we need to obtain lower and up-
per bounds on the extrema of the a-posteriori GP mean and
variance functions on neighborhoods of a given test point.



We obtain these bounds by constructing lower and upper
approximations for the GP kernel as a function of the test
point, which are then propagated through the GP inference
formulas. Then, safe approximations for these values are ob-
tained by posing a series of optimization problems that can
be solved either analytically or by standard quadratic con-
vex optimization techniques. We illustrate the above frame-
work with explicit algorithmic techniques for GPs built with
squared-exponential and ReLU kernel.

Finally, we apply the methods presented here to character-
ize the robustness of GPs with ReLU kernel trained on a sub-
set of images included in the MNIST dataset. Relying on the
weak convergence between fully-connected NNs with ReLU
activation functions and the corresponding GPs with ReLU
kernel, we analyze the behaviour of such networks on ad-
versarial images in a Bayesian setting. We use SIFT (Lowe
2004) to focus on important patches of the image, and per-
form feature-level safety analyses of test points included in
the dataset. We apply the proposed methods to evaluate the
resilience of features against (generic) adversarial perturba-
tions bounded in norm, and discuss how this is affected by
stronger perturbations and different misclassification thresh-
olds. We perform a parametric optimization analysis of max-
imum prediction variance around specific test points in an
effort to characterize active defenses against adversarial ex-
amples that rely on variance thresholding. In the examples
we studied, we have consistently observed that, while an in-
creased number of training samples may significantly help
detect adversarial examples by means of prediction uncer-
tainty, the process may be undermined by more complex ar-
chitectures.

In summary, the paper makes the following main contri-
butions:
• We provide tight upper bounds on the probability that the

prediction of a Gaussian process remains close to a given
test point in a neighbourhood, which can be used to quan-
tify local robustness against adversarial examples.

• We develop algorithmic methods for the computation of
extrema of GP mean and variance over a compact set.

• Relying on convergence between fully-connected NNs
and GPs, we apply the developed methods to provide
feature-level analysis of the behaviour of the former on
the MNIST dataset.

Why probabilistic local robustness guarantees? Our re-
sults provide formal local robustness guarantees in the sense
that the resulting bounds are sound with respect to a neigh-
bourhood of an input, and numerical methods have not been
used. This enables certification for Bayesian methods that
is necessary in safety-critical applications, and is in contrast
with many existing pointwise approaches to detect adversar-
ial examples in Bayesian models, which are generally based
on heuristics, such as to reject test points with high uncer-
tainty (Li and Gal 2017; Feinman et al. 2017). We illustrate
the intuition with the following simple example.
Example 1. Let (z(x), x ∈ N) be a zero-mean stochastic
process with values in R. Consider the following widely used

definition of safety for a set T = [x1, ..., x10]

Psafe(z, T, δ) = Prob(∀x ∈ T, z(x) < δ), (1)

where δ ∈ R is a given threshold. Assume that, for all
xi, xj ∈ T , z(xi) and z(xj) are independently and equally
distributed random variables such that for each x ∈ T we
have Prob(z(x) < δ) = 0.85. Then, if we compute the above
property we obtain

Psafe(z, T, δ) = 0.8510 ≈ 0.197.

Thus, even though at each point z(x) has relatively high
probability of being safe, Psafe(z, T, δ) is still small. This
is because safety, as defined in Eqn 1, depends on a set of
points, and this must be accounted for to give robustness
guarantees for a given stochastic model. Note that, to sim-
plify, we used a discrtete set T , but the same reasoning re-
mains valid even if T ⊆ Rm,m > 0, as in this paper.

Related Work
Existing formal approaches for machine learning models
mostly focus on computing non-probabilistic local safety
guarantees (Raghunathan, Steinhardt, and Liang 2018;
Huang et al. 2017; Ruan, Huang, and Kwiatkowska 2018)
and generally neglect the uncertainty of the learning pro-
cess, which is intrinsic in a Bayesian model. Recently, em-
pirical methods to detect adversarial examples for Bayesian
NNs that utilise pointwise uncertainty have been introduced
(Li and Gal 2017; Feinman et al. 2017). However, these ap-
proaches can be fooled by attacks that generate adversarial
examples with small uncertainty as shown in (Carlini and
Wagner 2017). Unfortunately, obtaining formal guarantees
for Bayesian NNs is challenging since their posterior distri-
bution, which can be obtained in closed form for GPs, is gen-
erally analytically intractable (Gal and Ghahramani 2016).
In (Grosse et al. 2017b) attacks for Bayesian inference with
Gaussian processes based on local perturbations of the mean
have been presented.

Notions of safety for Gaussian processes have been re-
cently studied in the context of system design for stochastic
models (see, e.g. (Wachi et al. 2018; Bartocci et al. 2015;
Sadigh and Kapoor 2015; Sui et al. 2015)). In (Sadigh
and Kapoor 2015), the authors synthesize safe controllers
against Probabilistic Signal Temporal Logic (PrSTL) speci-
fications, which suffer from the issue illustrated in Example
1. Another related approach is that in (Sui et al. 2015), where
the authors build on (Srinivas et al. 2012) and introduce
SAFEOPT, a Bayesian optimization algorithm that addition-
ally guarantees that, for the optimized parameters, with high
probability the resulting objective function (sampled from a
GP) is greater than a threshold. However, they do not give
guarantees against perturbation of the synthesized parame-
ters. For instance, their method cannot guarantee that the re-
sulting behaviour will still be safe and close to the optimal
value if parameters corrupted by noise are applied. Our ap-
proach allows one to quantify such a probability. We should
also stress that, while it is often the case that the guarantees
provided by existing algorithms are statistical (i.e., given in
terms of confidence intervals), the bounds presented in this
paper are probabilistic.



Problem Formulation
We consider a Gaussian process

(
z(x), x ∈ Rm,m > 0

)
with values in Rn, n > 0 and with a Gaussian proba-
bility measure P such that, for any x1, x2, ..., xk ∈ Rm,
P (z(x1), z(x2), ..., z(xk)) is a multivariate normal distri-
bution2. We consider Bayesian inference for z. That is,
as illustrated in detail in the next section, given a dataset
D = {z(xi) = yi, i ∈ {1, ..., N}} of |D| := N samples, we
consider the process

z(x)|D, x ∈ Rm,

which represents the conditional distribution of z given the
set of observations in D. The first problem we examine is
Problem 1, where we want to compute the probability that
local perturbations of a given test point result in predictions
that remain close to the original.
Problem 1. (Probabilistic Safety). Consider the training
dataset D. Let T ⊆ Rm and fix x∗ ∈ T. For δ > 0 call

φi1(x∗,T, δ | D) =

P (∃x′ ∈ T s.t.
(
z(i)(x∗)− z(i)(x′)

)
> δ | D),

where z(i) is the i-th component of z. Then we say that com-
ponent i in z is safe with probability 1 − ε > 0 for x∗ with
respect to set T and perturbation δ > 0 iff

φi1(x∗, T, δ|D) ≤ ε. (2)

Intuitively, we consider a test point x∗ and a compact set T
containing x∗, and compute the probability that the predic-
tions of z remain δ−close for each x′ ∈ T . We consider
the components of the GP individually and with sign, en-
abling one-sided analysis. Note that T is composed of an
uncountable number of points, making the probability com-
putation challenging. Moreover, Problem 1 will still repre-
sent a sound notion of safety even in the case that a distri-
bution on the input space can be assumed. Problem 1 can be
generalized to local invariance of z with respect to a given
metric (Problem 2 below). In the next section, for the corre-
sponding solution, we will work with the L1 norm, but all
the results can be easily extended to any Lp norm, including
L∞.
Problem 2. (Probabilistic Invariance) Consider the train-
ing dataset D. Let T ⊆ Rm and assume x∗ ∈ T. For metric
|| · ||d : Rn → R≥0 and δ > 0 call

φ2(x∗,T, δ|D) = P (∃x′ ∈ T s.t. ||z(x′)− z(x∗))||d > δ|D)

Then we say that z is δ−invariant with respect to metric
|| · ||d for x∗ in T and perturbation δ > 0 with probability
1− ε > 0 iff

φ2(x∗,T, δ|D) ≤ ε. (3)

2In this paper we assume z is a separable stochastic process.
This is a standard and common assumption (Adler and Taylor
2009). The separability of z guarantees that Problem 1 and 2 are
measurable.
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Figure 1: Results of GP training.

Probabilistic invariance, as defined in Problem 2, bounds
the probability that each function sampled from z remains
within a distance of at most δ to the initial point. Note that
both Problem 1 and 2 quantify the probability of how the
output of a learning process changes its value in a set around
a given test input point, which implicitly gives probabilis-
tic guarantees for local robustness against adversarial exam-
ples. In the next section, in Theorem 1 and 2, we give an-
alytic upper bounds for Problem 1 and 2. In fact, analytic
distributions of the supremum of a GP, which would allow
one to solve the above problems, are known only for a very
limited class of GPs (and always for GPs evolving over time)
(Adler and Taylor 2009), making exact computation impos-
sible. However, first, we illustrate the intuition behind the
problems studied here on a GP regression problem.
Example 2. We consider a regression problem taken from
(Bach 2009), where we generate 128 samples from a ran-
dom two-dimensional covariance matrix, and define labels
as a (noisy) quadratic polynomial of the two input vari-
ables. We train a GP with squared-exponential kernel on
this dataset, using a maximum likelihood estimation of the
kernel hyper-parameters (Rasmussen 2004). The mean and
variance of the GP obtained after training are plotted in Fig-
ure 1, along with the samples used for training. Consider
the origin point xo = (0, 0), let γ = (0.1, 0.1) and de-
fine T oγ = [xo − γ, xo + γ]. As xo is a saddle point for
the mean function, variations of the mean around it are rel-
atively small. Analogously, the variance function exhibits a
flat behaviour around xo, meaning greater confidence of the
GP in performing predictions around xo. As such we expect
realizations of the GP to be consistently stable in a neigh-
bourhood of xo, which in turn translates to low values for
φ1(xo, T oγ , δ) and φ2(xo, T oγ , δ), where in φ1 and φ2, to sim-
plify the notation, we omit the dataset used for training. On
the other hand, around x∗ = (3, 3) the a-posteriori mean
changes quickly and the variance is high, reflecting higher
uncertainty. Hence, letting T ∗γ = [x∗−γ, x∗+γ], we expect
the values of φ1(x∗, T ∗γ , δ) and φ2(x∗, T ∗γ , δ) to be greater
than those computed for xo.

In the next section we show how φ1(x, Tγ , δ) and
φ2(x, Tγ , δ) can be computed to quantify the uncertainty



and variability of the predictions around xo and x∗.

Theoretical Results
Since z is a Gaussian process, its distribution is completely
defined by its mean µ : Rm → Rn and covariance (or
kernel) function Σ : Rm × Rm → Rn×n. Consider a set
of training data D = {z(xi) = yi, i ∈ {1, ..., N}}, and
call y = [y1, ..., yN ]. Training z in a Bayesian framework
is equivalent to computing the distribution of z given the
dataset D, that is, the distribution of the process

z̄ = z |N.

Given a test point x∗ ∈ Rm and x1, ..., xN training inputs in
D, consider the joint distribution [z(x∗), z(x1), ..., z(xN )],
which is still Gaussian with mean and covariance matrix
given by

µ = [µ(x∗), µ(x1), ..., µ(xN )] Σ =

[
Σx∗,x∗ Σx∗,D

ΣTx∗,D ΣD,D

]
,

where ΣD,D is the covariance matrix relative to vector
[z(x1), ..., z(x|D|)]. Then, it follows that z̄ is still Gaussian
with mean and covariance matrix defined as follows:

µ̄(x∗) = µ(x∗) + Σx∗,DΣ−1
D,D(y − µD) (4)

Σ̄x∗,x∗ = Σx∗,x∗ − Σx∗,DΣ−1
D,DΣTx∗,D, (5)

where µD = [µ(x1), ..., µ(xN )]. Hence, for GPs the distri-
bution of z̄(x∗) can be computed exactly.

Given two test points x∗1, x
∗
2 and x∗ = [x∗1, x

∗
2], the above

calculations can still be applied to compute the joint distri-
bution

z̄(x∗) =
(
[z(x∗1), z(x∗2)] | D

)
.

In particular, z̄(x∗) is still Gaussian and with mean µ̄ and
covariance matrix Σ̄ given by Eqns (4) and (5) but with

µ(x∗) = [µ(x∗1), µ(x∗2)] and Σx∗,x∗ =

[
Σx∗1 ,x∗1 Σx∗1 ,x∗2
ΣTx∗1 ,x∗2 Σx∗2 ,x∗2

]
.

From z̄(x∗) we can obtain the distribution of the following
random variable

zo(x∗1, x
∗
2) =

(
z(x∗1)− z(x∗2)

)
| D,

which represents the difference of z at two distinct test
points after training. It is straightforward to show that, given
B ∈ Rn×2n such that B = [I;−I], where I is the identity
matrix of dimension n, zo(x∗1, x

∗
2) is Gaussian with mean

and variance

µo(x∗1, x
∗
2) = Bµ̄(x∗) Σox∗1 ,x∗2 = BΣ̄x∗,x∗B

T .

zo(x∗1, x
∗
2) is the distribution of how z, after training,

changes with respect to two different test points. However,
to solve Problem 1 and 2, we need to take into account all
the test points in T ⊆ Rm and compute the probability that
in at least one of them zo exits from a given set of the out-
put space. This is done in Theorem 1 by making use of the
Borell-TIS inequality and of the Dudley’s entropy integral
(Adler and Taylor 2009; Dudley 1967). The above inequali-
ties allow one to study Gaussian processes by appropriately

defining a metric on the variance of the GPs. In order to
define such a metric we call ẑo the GP with the same co-
variance matrix as zo but with zero mean and ẑo,(i) its i-th
component. For i ∈ {1, ..., n}, a test point x∗ ∈ Rm, and
x1, x2 ∈ Rm we define the (pseudo-)metric d(i)

x∗ (x1, x2) by

d
(i)
x∗ (x1, x2) =

√
E[(ẑo,(i)(x∗, x1)− ẑo,(i)(x∗, x2))2] (6)

=
√
E[(ẑ(i)(x2)− ẑ(i)(x1))2],

where ẑ(i) is the i-th component of the zero-mean version of
z̄. Note that d(i)

x∗ (x1, x2) does not depend on x∗. Addition-
ally, we assume there exists a constant K(i)

x∗ > 0 such that
for a compact T ⊆ Rm and x∗, x1, x2 ∈ T 3

d
(i)
x∗ (x1, x2) ≤ K(i)

x∗ ||x1 − x2||2.

Now, we are finally ready to state the following theorem.
Theorem 1. Assume T ⊆ Rm,m > 0, is a hyper-cube
with layers of length D > 0. For x∗ ∈ T, δ > 0, and i ∈
{1, . . . , n} let

ηi = δ −
(
supx∈Tµ

o,(i)(x∗, x) +

12

∫ 1
2 supx1,x2∈T d

(i)

x∗ (x1,x2)

0

√√√√ln

((√mK(i)
x∗D

z
+ 1
)m)

dz
)
.

Assume ηi > 0. Then, it holds that

φi1(x∗, T, δ|D) ≤ φ̂i1(x∗, T, δ|D) := e
− η2

i

2ξ(i) ,

where ξ(i) = supx∈T Σ
o,(i,i)
x∗,x is the supremum of the compo-

nent (i, i) of the covariance matrix Σox∗,x.

Proof. [Sketch.]

φi1(x∗, T, δ|D)

(By definition of φ1)

=P (∃x ∈ T s.t.
(
z(i)(x)− z(i)(x∗) > δ | D

)
(By definition of supremum)

=P
(

sup
x∈T

zo,(i)(x∗, x) > δ
)

(By linearity of GPs)

=P
(

sup
x∈T

ẑo,(i)(x∗, x) + E[zo,(i)(x∗, x)] > δ
)

(By definition of supremum)

≤P
(

sup
x∈T

ẑo,(i)(x∗, x) > δ − supx1∈TE[zo,(i)(x∗, x1)]
)
.

where ẑo,(i)(x∗, x) is the zero mean Gaussian process with
same variance of zo,(i)(x∗, x). The last inequality can be
bounded from above using the Borell-TIS inequality (Adler
and Taylor 2009). To use such an inequality we need to de-
rive an upper bound of E[supt∈T z

o,(i)(x∗, x)]. This can be

3Note that here we work with the L2 norm, but any other Lp

metric would work.



done by employing the Dudley’s Entropy integral (Dudley
1967).

The extended version of the proof can be found in the
Appendix.

In Theorem 1 we derive φ̂i1(x∗, T, δ|D) as an upper bound
for φi1(x∗, T, δ|D). Considering that z is a Gaussian process,
it is interesting to note that the resulting bounds still follow
an exponential distribution. From Theorem 1 we have the
following result.
Theorem 2. Assume T ⊆ Rm,m > 0 is a hyper-cube with
layers of length D > 0. For x∗ ∈ T, δ > 0 let

η̄i =
δ − supx∈T |µo(x∗, x)|1

n
−

12

∫ 1
2 supx1,x2∈T d

(i)

x∗ (x1,x2)

0

√√√√ln

((√mK(i)
x∗D

z
+ 1
)m)

dz.

For each i ∈ {1, ..., n} assume η̄i > 0. Then, it holds that

φ2(x∗, T, δ|D) ≤ φ̂2(x∗, T, δ|D) := 2

n∑
i=1

e
− η̄2

i

2ξ(i) ,

where ξ(i) = supx∈T Σ
o,(i,i)
x∗,x .

Note that in Theorem 1 and 2 we assume that T is a hyper-
cube. However, proofs of both theorems (reported in the
Supplementary Materials) can be easily extended to more
general compact sets, at a cost of more complex analytic ex-
pressions or less tight bounds.

Both theorems require the computation of a set of con-
stants, which depends on the particular kernel. In particu-
lar, ξ(i) and supx∈T µ

o,(i)(x∗, x) are upper bound of vari-
ance and mean a-posteriori while, for a test point x∗, K(i)

x∗

and supx1,x2∈T d
(i)
x∗ (x1, x2) represent local Lipschitz con-

stant and upper bound for d(i)
x∗ in T. In the next section, we

show how these constants can be computed.
Example 3. We illustrate the upper bounds for φ1 and φ2,
as given by Theorem 1 and 2, on the GP introduced in Exam-
ple 2. Figure 2 shows the values obtained for φ̂1 and φ̂2 on
xo and x∗ for δ between 0 and 0.2. We observe that values
computed for x∗ are consistently greater than those com-
puted for xo, which captures and probabilistically quantifies
the increased uncertainty of the GP around x∗, as well as
the increased ratio of mean variation around it (see Figure
1). Notice also that values for φ̂1 are always smaller than
the corresponding φ̂2 values. This is a direct consequence of
the fact that probabilistic invariance is a stronger require-
ment than probabilistic safety, as defined in Problem 1, as
the latter is not affected by variations that tend to increase
the value of the GP output (translating to increased confi-
dence in classification settings). In Figure 2 we also com-
pare the upper bounds obtained with estimation for φ1 and
φ2 based on sampling of the GP in a discrete grid around
the test points. Specifically, we sample 10000 functions from
the GP and evaluate them in 2025 points uniformly spaced
around the test point. We remark that this provides us with

just an empirical under-approximation of the actual values
of φ1 and φ2, referred to as φ̄1 and φ̄2 respectively. Note also
that φ̄1 and φ̄2 have an exponential decay. The results sug-
gest that the approximation is tighter around xo than around
x∗. In fact, higher variance will generally imply a looser
bound, also due to the over-approximations introduced in
the computation of the constants required in the theorems.

Constant Computation
We introduce a general framework for the computation of
the constants involved in the bounds presented in the pre-
vious section with an approach based on a generalisation
of that of (Jones, Schonlau, and Welch 1998) for squared-
exponential kernels in the setting of Kriging regression.
Namely, we assume the existence of a suitable decompo-
sition of the kernel function as Σx,xi = ψΣ (ϕΣ (x, xi)) for
all x and xi ∈ Rm, such that:

1. ϕΣ : Rm × Rm → R is a continuous function;

2. ψΣ : R→ R is differentiable, with dψΣ

dϕΣ
continuous;

3. supx∈T
∑N
i=1 ciϕΣ (x, xi) can be exactly computed for

each ci ∈ R and xi ∈ Rm, i = 1, . . . , N .
While assumptions 1 and 2 usually follow from smoothness
of the kernel used, assumption 3 depends on the particu-
lar ϕΣ defined. Intuitively, ϕΣ should represent the smallest
building block of the kernel which captures the dependence
on the two input points. For example for the squared ex-
ponential kernel this has the form of a separable quadratic
polynomial so that assumption 3 is verified. Similarly, for
the ReLU kernel ϕΣ can be defined as the dot product be-
tween the two input points. A list of commonly used kernels
that satisfy assumptions 1 to 3 is given in the Supplementary
Materials, along with valid decomposition functions ϕΣ and
ψΣ.

Assumptions 1 and 2 guarantee the existence for every
xi ∈ Rm of a set of constants aiL, biL, aiU and biU such that:

aiL+biLϕΣ (x, xi) ≤ Σx,xi ≤ aiU+biUϕΣ (x, xi) ∀x ∈ T.
(7)

In fact, it follows from those that ψΣ has a finite number
of flex points. Hence, we can iteratively find lower and up-
per approximation in convex and concave parts, and merge
them together as detailed in the Supplementary Material.
The key point is that, due to linearity, this upper and lower
bound on the kernel can be propagated through the inference
equations for Gaussian processes, so as to obtain lower and
upper linear bounds on the a-posteriori mean and variance
with respect to ϕΣ. Thanks to assumption 3, these bounds
can be solved for optimal points exactly, thus providing for-
mal lower and upper values on optimization over a-posteriori
mean and variance of the Gaussian process in T . The de-
scribed approach can be used to compute ξ(i), K(i)

x∗ and
supx∈T µ

o(x∗, x) . In the following subsection we give de-
tails for the computation of supx∈T µ

o. We refer to the Sup-
plementary Materials for the details for the other constants
and for squared-exponential and ReLU kernels.



Mean Computation As x∗ is fixed, we have that
supx∈T µ

o = µ̄(x∗) − infx∈T µ̄(x), hence we need just
to compute infx∈T µ̄(x). Using Eqn (7) we can compute
a lower and upper bound to this inferior, which can be
refined using standard branch and bound techniques. Let
t = Σ−1

D,D(y−µD), then by the inference formula for Gaus-
sian processes and Eqn (7) we have that:

µ̄(x) =

N∑
i=1

tiΣx,xi ≥
N∑
i=1

ti
(
ai + biϕΣ (x, xi)

)
∀x ∈ T

where we choose: (ai, bi) =

{
(aiL, b

i
L), if ti ≥ 0.

(aiU , b
i
U ), otherwise.

. Let

x̄ be an inferior point for x ∈ T to the right-hand side Equa-
tion (we refer to the Supplementary Materials to show how
this can be computed for squared-exponential and ReLU
kernels), then, by the definition of inferior we have that:

µ̄(x̄) ≥ inf
x∈T

µ̄(x) ≥
N∑
i=1

tiai +

N∑
i=1

tibiϕΣ (x̄, xi) .

The latter provide bounds on infx∈T µ̄(x) that can be used
within a branch and bound algorithm for further refinement.

Computational Complexity
Performing inference with GPs has a cost that is O(N3),
where N is the size of the dataset. Once inference has been
performed the cost of computing upper and lower bounds
for supx∈T µ

o,(i)(x∗, x) is O(NC), where C is a con-
stant that depends on the particular kernel. For instance,
for the squared-exponential kernel C = 1, while for the
ReLU kernel (Eqn (8)) C = L, where L is the number
of layers of the corresponding neural network. The com-
putation of the bounds for ξ(i) requires solving a convex
quadratic problem in m + N + 1 variables, while K(i)

x∗ and
supx1,x2∈T d

(i)
x∗ (x1, x2) can be bounded in constant time.

Refining the bounds with a branch and bound approach has
a worst-case cost that is exponential in m, the dimension
of the input space. Hence, sparse approximations, which
mitigate the cost of performing inference with GP (Seeger,
Williams, and Lawrence 2003), are appealing.

Experimental Evaluation: Robustness
Analysis of Deep Neural Networks

In this section we apply the methods presented above to GP
defined with deep kernels, in an effort to provide a proba-
bilistic analysis of adversarial examples. This analysis is ex-
act for GPs, but only approximate for fully-connected NNs,
by virtue of weak convergence of the induced distributions
between deep kernel GPs and deep fully-connected NNs.

Experimental Setting
We focus on GPs with ReLU kernel, which directly corre-
spond to fully-connected NNs with ReLU activation func-
tions. Given the number of layers L, the regularization pa-
rameters σw (prior variance on the weights) and σb (prior

variance on the bias), the ReLU covariance ΣL (x1, x2) be-
tween two input points is iteratively defined by the set of
equations (Lee et al. 2017):

Σl(x1, x2) = σ2
b +

σ2
w

2π

√
Σl−1(x1, x1)Σl−1(x2, x2)(

sinβl−1
x1,x2

+ (π − βl−1
x1,x2

) cosβl−1
x1,x2

)
(8)

βlx1,x2
= cos−1

(
Σl(x1, x2)√

Σl(x1, x1)Σl(x2, x2)

)

for l = 1, . . . , L, where Σ0(x1, x2) = σ2
b +

σ2
w

m x1 · x2.

Training We follow the experimental setting of (Lee et al.
2017), that is, we train a selection of ReLU GPs on a sub-
set of the MNIST dataset using least-square classification
(i.e. posing a regression problem to solve the classification
task) and rely on optimal hyper-parameter values estimated
in the latter work. Note that the methods we presented are
not constrained to specific kernels or classification models,
and can be generalized by suitable modifications to the con-
stant computation part. Classification accuracy obtained on
the full MNIST test set varied between 77% (by training
only on 100 samples) to 95% (training on 2000 samples).
Unless otherwise stated, we perform analysis on the best
model obtained using 1000 training samples, that is, a two-
hidden-layer architecture with σ2

w = 3.19 and σ2
b = 0.00.

Analysis For scalability purposes we adopt the idea from
(Wicker, Huang, and Kwiatkowska 2018; Ruan, Huang, and
Kwiatkowska 2018) of performing a feature-level analy-
sis. Namely, we pre-process each image using SIFT (Lowe
2004). From its output, we keep salient points and their rel-
ative magnitude, which we use to extract relevant patches
from each image, in the following referred to as features. We
apply the analysis to thus extracted features. Unless other-
wise stated, feature numbering follows the descending order
of magnitude.

Feature-based Analysis
In the first row of Figure 3 we consider three images from
the MNIST test data, and for each we highlight the first five
features extracted by SIFT (or less if SIFT detected less than
five features). For each image xi, feature fj and γ > 0 we
consider the set of images T fj ,γ

xi given by the images differ-
ing from xi in only the pixels included in fj and by no more
than γ for each pixel.

We plot the values obtained for φ̂1 as a function of δ for
γ = 0.05 and γ = 0.15, respectively, on the second and third
row of Figure 3. Recall that φ̂1 represents an upper-bound on
the probability of finding x ∈ T fj ,γ

xi such that the classifica-
tion confidence for the correct class in x drops by more than
δ compared to that of xi. Since a greater γ value implies a
larger neighborhood T fj ,γ

xi , intuitively φ̂1 will monotonically
increase along with the value of γ. Interestingly, the rate of
increase is significantly different for different features. In
fact, while most of the 14 features analyzed in Figure 3 have



similar φ̂1 values for γ = 0.05, the values computed for
some of the features using γ = 0.15 are almost double (e.g.
feature 4 for the third image), and remains fairly similar for
others (e.g. feature 3 for the first image). Also the relative
ordering in robustness for different features is not consis-
tent for different values of γ (e.g. features 2 and 5 from the
first image). This highlights the need of performing paramet-
ric analysis of adversarial attacks, which take into account
different strengths and misclassification thresholds, as sug-
gested in (Biggio and Roli 2017). Finally, notice that, though
only 14 features are explored here, the experiment shows no
clear relationship between feature magnitude as estimated
by SIFT and feature robustness, which calls for caution in
adversarial attacks and defences that rely on feature impor-
tance. Note also that an empirical analysis of the robustness
based on sampling, as performed in Figure 2, becomes in-
feasible for this example as, in order to have good accuracy,
a fine grid over a high-dimensional input space would be
required.

Variance Analysis
Most active defences are based upon rejecting input sam-
ples characterized by high uncertainty values. After uncer-
tainty is estimated, defences of this type usually proceed
by setting a meta-learning problem whose goal is to dis-
tinguish between low and high variance input points, so as
to flag potential adversarial examples (Grosse et al. 2017b;
Feinman et al. 2017). However, mixed results are obtained
with this approach (Carlini and Wagner 2017).

In this subsection we aim at analyzing how the variance
around test samples changes with different training settings
for the three test points previously discussed. We use the
method developed for variance optimisation to compute:

σ̄2(x∗) =
1

Σ̄x∗,x∗
sup

x∈T f1,γ

x∗

Σ̄x,x,

that is, we look for the highest variance point in the T f1,γ
x∗

neighbourhood of x∗, and normalise its value with respect
to the variance at x∗. We use γ = 0.15 and perform the
analysis only on feature 1 of each image.

Figure 4 plots values of σ̄2(x∗) as a function of the num-
ber of layers (from 1 to 10) and samples (from 100 to 2000)
included in the training set. Firstly, notice how maximum
values of σ̄2(x∗) are perfectly aligned with the results of
Figure 3. That is, less robust features are associated with
higher values of σ̄2(x∗) (e.g. feature 1 for image 1). This
highlights the relationship between the existence of adver-
sarial examples in the neighbourhood of a point and model
uncertainty. We observe the normalised variance value to
consistently monotonically increase with respect to the num-
ber of training samples used. This suggests that, as more
and more training samples are input into the training model,
the latter become more confident in predicting “natural” test
samples compared to “artificial” ones. Unfortunately, as the
number of layers increases, the value of σ̄2(x∗) decreases
rapidly to a plateau. This seems to point to the fact that de-
fence methods based on a-posteriori variance thresholding
become less effective with more complex neural network

architectures, which could be a justification for the mixed
results obtained so far using active defences.

Conclusion
In this paper we presented a formal approach for safety anal-
ysis of Bayesian inference with Gaussian process priors with
respect to adversarial examples and invariance properties.
As the properties considered in this paper cannot be com-
puted exactly for general GPs, we compute their safe over-
approximations. Our bounds are based on the Borell-TIS in-
equality and the Dudley entropy integral, which are known
to give tight bounds for the study of suprema of Gaussian
processes (Adler and Taylor 2009). On examples of regres-
sion tasks for GPs and deep neural networks, we showed
how our results allow one to quantify the uncertainty associ-
ated to a given prediction, also taking into account of local
perturbations of the input space. Hence, we believe our re-
sults represent a step towards the application of Bayesian
models in safety-critical applications.
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Figure 2: Upper bounds (solid lines) and sampling approximation (dashed lines) for φ1 (left plot) and φ2 (right plot) on xo and
x∗.
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Figure 3: First row: three images randomly selected from the MNIST test set, along with detected SIFT features. Second row:
respective φ̂1 values for γ = 0.05. Third row: respective φ̂1 values for γ = 0.15.
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Supplementary Materials
In what follows we report the supplementary material of the paper. We first report the proofs of the main results and then give
further details of the algorithmic framework we develop to compute the constants required in Theorem 1 and 2. Finally, we give
details for the case of the squared-exponential kernel and ReLu kernel.

Proofs
Proof of Theorem 1

P (∃x ∈ T s.t.
(
z(i)(x∗)− z(i)(x) > δ | D

)
(By definition of supremum)

=P
(

sup
x∈T

zo,(i)(x∗, x) > δ
)

(By linearity of GPs)

=P
(

sup
x∈T

ẑo,(i)(x∗, x) + E[zo,(i)(x∗, x)] > δ
)

(By definition of supremum)

≤P
(

sup
x∈T

ẑo,(i)(x∗, x) > δ − supx1∈TE[zo,(i)(x∗, x1)]
)
.

where ẑo,(i)(x∗, x) is the zero mean Gaussian process with same variance of zo,(i)(x∗, x). The last inequality can be bound
from above using the following inequality, called Borell-TIS inequality (Adler and Taylor 2009).
Theorem 3. (Borell-TIS inequality) Let ẑ a zero-mean unidimensional Gaussian process with covariance matrix Σ. Assume
E[supx∈T ẑ(x)] <∞. Then, for any u > E[supx∈T ẑ(x)] it holds that

P (supx∈T ẑ(x) > u) ≤ e
(u−E[supt∈T ẑ(x)])2

2σ2
T , (9)

where σ2
T = supx∈TΣ(x).

In order to use the Borell-TIS inequality we need to bound from above E[supt∈T ẑ(x)], the expectation of the supremum of ẑ.
For Gaussian processes we can use the Dudley’s entropy integral (Adler and Taylor 2009), which guarantees that

E[sup
x∈T

ẑ(x)] ≤ 12

∫ supx1,x2∈T d(x1,x2)

0

√
ln(N(d, x, T ))dx,

where N(d, x, T ) is the smallest number of balls of radius x according to metric d that completely cover T (see (Adler and
Taylor 2009) for further details). For a hyper-cube T of dimension D, in order to compute N(d, x, T ), we first need to compute
N(L2, r, T ), the number of covering balls of diameter r of T under L2 norm. As the largest hyper-cube contained inside a
m−sphere of diameter r has a side of length r√

m
, we obtain

N(L2, r, T ) ≤
(
1 +

D
√
m

r

)m
.

Now we know that for x∗ ∈ T
supx1,x2∈T d

(i)
x∗ (x2, x1) ≤ K(i)

x̂ ||x2 − x1||2,
Thus, this implies that all the points inside a ball of radius r = x

K
(i)
x̂

will have a distance in the d metric smaller or equal than

x. Thus, the number of covering balls of radius x for T , according to pseudo-metric d is upper-bounded by

N(d, x, T ) ≤
(√mDK(i)

x̂

x
+ 1
)m
.



Proof of Theorem 2

P (∃x ∈ T s.t. ||z(x∗)− z(x)||1 > δ | D
)

(By definition of supremum)

=P
(

sup
x∈T
||zo(x∗, x)||1 > δ

)
(By definition of L1 norm)

=P
(

sup
x∈T

n∑
i=1

|zo,(i)(x∗, x)| > δ
)

(By closure of GPs wrt linear operations)

≤P
(

sup
x∈T

n∑
i=1

|ẑo,(i)(x∗, x)| > δ − supx1∈T ||µo(x1, x
∗)||1

)
(By the fact that ∀i ∈ {1, ..., n}|ẑ(i)(x)− ẑ(i)(x∗)| ≥ 0)

≤P
(
∨i∈{1,...,n} sup

x∈T
|ẑo,(i)(x∗, x)| > δ − supx1∈T ||µo(x1, x

∗)||1
n

)
(By the union bound and symmetric properties of Gaussian distributions)

≤2

n∑
i=1

P
(

sup
x∈T

ẑo,(i)(x, x∗) >
δ − supx1∈T ||µo(x1, x

∗)||1
n

)
.

Last term can be bounded by using the Borell-TIS inequality and Dudley’s entropy integral, as shown in the proof of Theorem
1.

Constants Computation
Lower and Upper bound to Kernel Function
In this subsection we describe a method for computing lower and linear approximation to the kernel function. Namely, given
x ∈ T and x∗ ∈ Rm, in this we show how to compute aL, bL such that:

aL + bLϕΣ (x, x∗) ≤ Σx,x∗ ∀x ∈ T.

Notice that the same techniques can be used to find aU and bU coefficients of an upper-bound, simply by considering −Σx,x∗ .
Let ϕLΣ and ϕUΣ be maximum and minimum values of ϕΣ(x, x∗) for x ∈ T , and consider the univariate and unidimensional
function ψΣ(ϕΣ) : [ϕLΣ, ϕ

U
Σ ]→ R. We can then compute aL and bL by using the methods described below.

Case 1 If ψΣ happens to be concave function, than by definition of concave function, a lower bound is given by the line that
links the points (ϕLΣ, ψΣ(ϕLΣ)) and (ϕUΣ , ψΣ(ϕUΣ)).

Case 2 If on the other hand ψΣ happens to be a convex function, than by definition of convex function, a valid lower bound
is given by the tangent line in the middle point (ϕLΣ + ϕLΣ)/2 of the interval.

Case 3 Assume now, that ψΣ is concave in [ϕLΣ, ϕ
C
Σ ], and convex in [ϕCΣ , ϕ

U
Σ ], for a certain ϕCΣ ∈ [ϕLΣ, ϕ

U
Σ ] (the same

line of arguments can be used by reversing convexity and concavity). Let a1
L, b1L coefficients for linear lower approximation

in [ϕLΣ, ϕ
C
Σ ] and a2

L, b2L analogous coefficients in [ϕCΣ , ϕ
U
Σ ] (respectively computed as for Case 1 and 2), and call f1 and f2

the corresponding functions. Define F to be the linear function of coefficients aL and bL that goes through the two points
(ϕLΣ,min(f1(ϕLΣ), f2(ϕLΣ))) and (ϕUΣ , f2(ϕUΣ)). We then have that F is a valid linear lower bound in [ϕLΣ, ϕ

U
Σ ] in fact:

1. if f1(ϕLΣ) = min(f1(ϕLΣ), f2(ϕLΣ): in this case we have that F (ϕLΣ) = f1(ϕLΣ) ≤ f2(ϕLΣ), and F (ϕUΣ) = f2(ϕUΣ). Hence
F (ϕΣ) ≤ f2(ϕΣ) in [ϕLΣ, ϕ

U
Σ ], in particular in [ϕCΣ , ϕ

U
Σ ] as well. This also implies that F (ϕCΣ) ≤ f2(ϕCΣ) ≤ f1(ϕCΣ). On the

other hand, F (ϕLΣ) = f1(ϕLΣ), hence F (ϕΣ) ≤ f1(ϕΣ) in [ϕlΣ, ϕ
C
Σ ]. Combining these two results and for contrsuction of f1

and f2 we have that F (ϕΣ) ≤ ψΣ(ϕΣ) in [ϕLΣ, ϕ
U
Σ ].

2. if f2(ϕLΣ) = min(f1(ϕLΣ), f2(ϕLΣ): In this case we have F = f2, we just have to show that F (ϕΣ) ≤ f1(ϕΣ) in [ϕLΣ, ϕ
C
Σ ].

This immediately follow noticing that f2(ϕCΣ) ≤ f1(ϕCΣ) and f2(ϕLΣ) ≤ f1(ϕLΣ).



Case 4 In the general case, assuming to have a finite number of flex points, we can divide the interval [ϕLΣ, ϕ
U
Σ ] in subintervals

in which ψΣ is either convex or concave. We can then proceed iteratively from the two left-most intervals by repeatedly applying
case 3.

Variance
In this subsection we show how to compute lower and upper bound on ξ(i) = supx∈T Σ

o,(i,i)
x∗,x . Though a similar approach to

that used for the mean can be used to compute analytic bound on the variance, empirically a convex relaxation of the problem
is more efficient. By definition of Σ

o,(i,i)
x∗,x and applying the GP inference equations, we have that:

Σ
o,(i,i)
x∗,x = (Σx∗,x∗ + Σx,x − 2Σx,x∗)− (Σx∗,DΣ−1

D,DΣTx∗,D + Σx,DΣ−1
D,DΣTx,D − 2Σx∗,DΣ−1

D,DΣTx,D).

As such, the computation of ξ boils down to the computation of:

inf
x∈T

(
Σx,DΣ−1

D,DΣTx,D + 2Σx,x∗ − 2Σx∗,DΣ−1
D,DΣTx,D

)
(10)

as all the other terms involved in the optimization are constant with respect to x. The approach is based on a quadratic convex-
ification of the above problem, which can hence be solved by standard optimisation methods. By defining the slack variable
vector r = Σx,D =

(
Σx,x1

,Σx,x2
, . . . ,Σx,x|D|

)
of covariances between point x and points included in the training set, and

r∗ = Σx,x∗ of covariance between x and the test sample x∗, we can rewrite the optimization Problem 10 as:

inf
x∈T

(
rΣ−1
D,Dr

T + 2r∗ − 2Σx∗,DΣ−1
D,Dr

T
)

subject to: rl = Σx,xl l = 1, . . . , |D|
r∗ = Σx,x∗ .

Notice that the objective function of the problem is convex with respect to the variable vector (x, r, r∗), since Σ−1
D,D is symmetric

and positive definite. Notice that the constraints of the problem are still generally non-convex, but can be over-approximated
using the methods presented in (Jones, Schonlau, and Welch 1998). This lead to the definition of a convex problem on the
variable vector (x, r, r∗), that can be solved to compute lower and upper bound on ξ(i).

Bounds on supx1,x2∈T d
(i)
x∗ (x1, x2)

An upper bound to supx1,x2∈T d
(i)
x∗ (x1, x2) follows directly from the computation of ξ(i). By the fact that d(i)

x∗ is a pseudometric,
it follows that for every x1 and x2 in T :

d
(i)
x∗ (x1, x2) ≤ d(i)

x∗ (x
∗, x1) + d

(i)
x∗ (x

∗, x2)

hence:

sup
x1,x2∈T

d
(i)
x∗ (x1, x2) ≤ sup

x1,x2∈T

(
d

(i)
x∗ (x

∗, x1) + d
(i)
x∗ (x

∗, x2)
)

= sup
x1∈T

d
(i)
x∗ (x

∗, x1) + sup
x2∈T

d
(i)
x∗ (x

∗, x2) = 2ξ(i).

Bounds on K(i)
x∗

In this subsection we describe how to over approximate K(i)
x∗ . Recall that for x∗, x1, x2 ∈ Rm we work with the pseudo-norm

d
(i)
x∗ (x1, x2) defined as in Eqn (6) and for i ∈ {1, ...,m} need to find a constant K(i) such that

d
(i)
x∗ (x1, x2) ≤ K(i)

x∗ ||x1 − x2||2.

In order to simplify our task we can derive over approximations of K(i) by working only with the priors distributions. In fact,
it is easy to show that

d(i)(x1, x2) =

√
Σ
o,(i,i)
x1,x1 + Σ

o,(i,i)
x2,x2 − 2Σ

o,(i,i)
x1,x2

=

√
Σ

(i,i)
x1,x1 + Σ

(i,i)
x2,x2 − 2Σ

(i,i)
x1,x2 − (Σ

(i,i),T
x1,D Σ−1

D Σ
(i,i)
x1,D + (Σ

(i,i)
x2,D)TΣ−1

D Σ
(i,i)
x2,D − 2(Σ

(i,i)
x1,D)TΣ−1

D Σ
(i,i)
x2,D)

≤
√

Σ
(i,i)
x1,x1 + Σ

(i,i)
x2,x2 − 2Σ

(i,i)
x1,x2 ,

where the last inequality follows from the fact that Σ−1
D is symmetric and positive definite. Thus, to get over-approximations

of K(i)
x∗ , it is enough to consider consider only the prior distributions of the system. Note also that if m = 1, then over-

approximations can be simply obtained using the mean value theorem.



Squared-Exponential Kernel
In this Section we provide constant computation details for squared-exponential kernel.

Definition of ϕΣ and ψΣ

According to the squared-exponential kernel we have

Σx1,x2
= σ2 exp

− m∑
j=1

θj(x
(j)
1 − x

(j)
2 )2

 .

By defining:

ϕΣ(x1, x2) =

m∑
j=1

θj(x
(j)
1 − x

(j)
2 )2

ψΣ(ϕΣ) = σ2 exp (−ϕΣ(x1, x2))

we have that Σx1,x2
= ψΣ(ϕΣ (x1, x2)), and ϕΣ and ψΣ satisfy the assumptions 1 to 3 stated in the main text (Section Constant

Computation).

Computation of K(i)
x∗

Relying only on the prior, we have

d(i)(x1, x2)

|x1 − x2|2
≤

√
2σ2(1− exp(−

∑m
j=1 θj(x

(j)
1 − x

(j)
2 )2))

||x1 − x2||2
.

Without any lost of generality, we assume ∀j ∈ 1, ...,m, 0 ≤ θj ≤ 1 and that x1, x2 are such that for each j ∈ {1, ...,m}
0 ≤ x(j)

1 ≤ 1, 0 ≤ x(j)
2 ≤ 1. Then .

(d(i)(x1, x2))2

|x1 − x2|2
≤

2σ2(1− exp(−
∑m
j=1 θj(x

(j)
1 − x

(j)
2 )2))∑m

j=1 θj(x
(j)
1 − x

(j)
2 )2

Now we can introduce the variable r =
∑m
j=1 θj(x

(j)
1 − x

(j)
2 )2 and we obtain

(d(i)(x1, x2))2

||x1 − x2||2
≤2σ2(1− exp(−r))

r

As everything is positive and the square root is a monotonic function we obtain:

K̄
(i)
x̄ ≤

√
sup

r∈[0,ub]

2σ2(1− exp(−r))
r

=
√

2σ2 =
√

2σ

where ub = supx1,x2∈T
∑m
j=1 θj(x

(j)
1 − x

(j)
2 )2.

ReLu Kernel
In this Section we provide constant computation details for the ReLU kernel. For simplicity we focus the discussion on a single
layer ReLU kernel, and notice that by the recursion of the kernel definition with more than one hidden layer, the results here
presented are generalisable to an arbitrary number of layers.

Definition of ϕΣ and ψΣ

By following the kernel computation procedure outlined by (Lee et al. 2017), we pre-process each input point to have norm one
before inputting it into the GP. By doing this the one-layer ReLU kernel simplifies to:

Σx1,x2
= σ2

b +
σ2
w

2π

(
σ2
b +

σ2
w

m

)(
sin

(
cos−1 σ

2
b +

σ2
w

m (x1 · x2)

σ2
b +

σ2
w

m

)
+
σ2
b +

σ2
w

m (x1 · x2)

σ2
b +

σ2
w

m

(
π − cos−1 σ

2
b +

σ2
w

m (x1 · x2)

σ2
b +

σ2
w

m

))
.



we define:

ϕΣ(x1, x2) = k1 + k2(x1 · x2)

ψΣ(ϕΣ) = σ2
b +

σ2
w

2π

(
σ2
b +

σ2
w

m

)(
sin
(
cos−1 ϕΣ(x1, x2)

)
+ ϕΣ(x1, x2)

(
π − cos−1 ϕΣ(x1, x2)

))
.

where:

k1 =
σ2
b

σ2
b +

σ2
w

m

and k2 =
σ2
w

m

σ2
b +

σ2
w

m

.

Due to smoothness of trigonometric functions it is easy to see that this decomposition of the kernel satisfy assumptions 1–2
stated in the main text (Section Constants Computation). We also have that, thanks to the linearity of the dot product, for every
ci and xi

N∑
i=1

ciϕΣ(x, xi) = k1

(
N∑
i=1

ci − 1

)
+ ϕΣ

(
x,

N∑
i=1

cixi

)
.

Hence the computation of the superior defined in Assumption 3, boils down to the trivial computation of the maximum of a dot
product.

Computation of K(i)
x∗

By taking into consideration only the priors, and by paramterising the kernel using the α = cos−1 x1 · x2, we obtain a 1-
dimensional form for d(i)(x1, x2))2 from which we can directly compute an overapproximation of K(i)

x∗ , as outlined in the
previous sections

Kernel Functions Decomposition
We provide decomposition of commonly used kernel functions that satisfy Assumptions 1,2 and 3 stated in the main text.
Rational Quadratic Kernel defined as:

Σx1,x2
= σ2

1 +
1

2

m∑
j=1

θj

(
x

(j)
1 − x

(j)
2

)2

−α
with hyper-parameters σ, α and θj , for j = 1, . . . ,m.
Linear Kernel defined as:

Σx1,x2 = σ2
m∑
j=1

(x
(j)
1 − θj)(x

(j)
2 − θj)

with hyper-parameters σ and θj , for j = 1, . . . ,m.
Periodic Kernel defined as:

Σx1,x2
= σ2 exp

−1

2

m∑
j=1

θj sin
(
pj(x

(j)
1 − x

(j)
2 )
)2


with hyper-parameters σ, θj and pj for j = 1, . . . ,m.
Matérn Kernel for half-integers values, defined as:

Σx1,x2
= σ2kp exp

−
√√√√k̂p

m∑
j=1

θj(x
(j)
1 − x

(j)
2 )

 p∑
l=0

kl,p

√√√√k̂p

m∑
j=1

θj(x
(j)
1 − x

(j)
2 )

p−l

with hyper-parameters σ, θj , for j = 1, . . . ,m, and (integer valued) p; while kp, k̂p and kl,p are constants.
Table ?? shows decompositions for the kernels listed above that satisfy Assumptions 1,2 and 3. Specifically, for the periodic

kernel Assumption 3 is not strictly satisfied as it is equivalent to the computation of:

sup
x∈T

N∑
i=1

ci

m∑
j=1

θj sin(pj(x
(j) − x(j)

i ))2.

Each summand separately can be trivially optimized; summing together the individual optima provides a sound over-
approximation of the sup. As such, the decomposition will provide formal lower and upper bounds that can be used for branch
and bound, though in general those will be looser requiring an increased number of iterations in practice.



Kernel ψΣ(ϕΣ) ϕΣ(x1, x2)

Squared Exponential σ2 exp (−ϕΣ(x1, x2))
∑m
j=1 θj(x

(j)
1 − x

(j)
2 )2

ReLU σ2
b +

σ2
w

2π

(
σ2
b +

σ2
w

m

) (
sin
(
cos−1 ϕΣ(x1, x2)

)
+

k1 + k2(x1 · x2)
+ϕΣ(x1, x2)

(
π − cos−1 ϕΣ(x1, x2)

) )
Rational Quadratic σ2(1 + ϕΣ

2 )−α
∑m
j=1 θj(x

(j)
1 − x

(j)
2 )2

Linear σ2ϕΣ

∑m
j=1(x

(j)
1 − θj)(x

(j)
2 − θj)

Periodic σ2 exp(−0.5ϕΣ)
∑m
j=1 θj sin(pj(x

(j)
1 − x

(j)
2 ))2

Matérn σ2kp exp (−√ϕΣ)
∑p
l=0 kl,p

√
ϕp−lΣ k̂p

∑m
j=1 θj(x

(j)
1 − x

(j)
2 )

Table 1: Kernels decomposition that satisfy the three assumptions stated in the main text (Section Constant Computation).
Decomposition for Matérn kernel is given only for half-integer values. Decomposition for the ReLU kernel is given in the case
of one-hidden layer, generalisation to an arbitrary number of layers can be obtained by recursive application of the formulas.


